NC STATE UNIVERSITY

Sustainable Composite Packaging as an Alternative to Plastics

Jacob Kennedy, Aarati Bothe, Katelyn Foust, Raleigh Fauquier

1. Objective

- Scale up the existing laboratory synthesis of SDC-Agarose biopolymer film to a manufacturing facility capable of producing a portion of plastic film demand.
- Evaluate economic feasibility, as well as safety and environmental aspects of the design.

2. Background

- 450 million tons of plastic are made from petroleum-based biopolymers each year
 40% go into packaging, which is mostly PET
- Agarose and Chitosan are renewable and compostable resources with demonstrated physical strengths and film properties.
 - $\circ\;$ Agarose contributes the base of the film structure
 - Chitosan acts as a filler, adding structure to the network

3. Strength Properties

	SDC-Agarose Biopolymer	Polyethylene Terephthalate (PET)		
Elongation at Break	12.5 %	125 %		
Ultimate Tensile Strength	53 MPa	55 MPa		
Water Contact Angle	95°	72.5°		
Oxygen Permeability	30 $\frac{cm^3(STP)\cdot 100 \ \mu m}{m^2 \cdot d \cdot bar}$	$30 \frac{cm^3(STP)\cdot 100 \ \mu m}{m^2 \cdot d \cdot bar}$		

4. Process Flow Diagram Wate 27 Anaros ()0 Glycerol Mixer 4 Acetic Acid ۲ Turbulent Shearing Device . Mixer Centrifuge NaCD 0 Mixer istillation Column 15 ۲ 23

5. Safety and Sustainability

Safety:

- Simple mechanical machinery and lack of chemical reactions means less extensive knowledge and safety trainings are required for operation.
 - Less likelihood for catastrophes and accidents.

Sustainability:

- Agarose and chitosan (as well as the other solvents) are all renewable and compostable.
- There are no toxic mediums or waste that could jeopardize the surrounding ecosystems.
 - No waste in general due to the incorporation of the recycle stream.

6. Economics and Profitability

	SDC-Agarose Biopolymer	PE	PP	PET	PS	PVC
Price per kg	\$9.34	\$1.21	\$1.21	\$0.95	\$1.59	\$1.39

- Compared with the average \$1.27/kg price of petroleum-based plastics, this new biopolymer will cost at least 635% more, depending on the market price assigned for profit.
- There is potential for miniscule cost reductions in tax rewards for green buildings and processes, and in government subsidy since this product would help the country meet a number of developmental goals.

7. Conclusion

- Due to its excessive production costs, the SDC-Agarose biopolymer composite film would have a hard time competing with the current petroleum-based plastics used in films today.
- Since it is not economically viable, it should remain as a case study and testament to the future of sustainable packaging, until cheaper resources can be acquired.

8. Acknowledgement

Group 21 would like to express gratitude for the support and guidance provided by Dr. Velev, Mesbah Ahmad, and Dr. Bullard throughout the project.