Carbon Capture by Liquid Metal Catalysis

Jonathan Falso, Natalie Kelmer, Bryce Miller, Colin Scanlon **Mentor: Dr. Michael Dickey**

1. Overview

- Microsoft's Climate Research Initiative seeks to aid in the growing climate crisis by conducting cross-disciplinary, collaborative research projects.
- One such research project involves the investigation of liquid metal catalyzed CO_2 reduction that produces a storable, valueadded product.
- Current methods of CO₂ reduction are costly, inefficient, or produce products that are not easily stored.

Carbon Sequestration

2. Technical Background

- Traditional carbon dioxide reduction requires large amounts of energy to activate CO_2 .
- A newly proposed method of CO₂ reduction requires only mechanical energy for activation.
- When two liquid metal particles collide in an organic solvent, they generate a triboelectric voltage difference.

Ag_{0.72}Ga_{0.28} rod

- The voltage difference on the catalyst surface allows dissolved CO_2 to be converted to solid carbon and O_2
- Using an organic solvent mixture of 90% DMF and 10% ETA, a conversion rate of 92% was Carbon flake achieved.

	4. Economic	Assessmer
	Capital Costs	Yearly Expenditures Breakd \$85,410
b b	• 9.5 million USD (One 40,000L	\$193,000
	Reactor)	\$24,000
	Operating Costs	
e)	 1.1 million USD per year 	Operations & Maintenance Utilities Carbon Dio
	Cumulative Cash Flow	Net Present Valu
	At 6 USD per kg graphene	 At 6 USD per kg gra
	oxide: 673,000 USD	oxide:
	5	4 2
		0 2 4 6 8 10 12 12 Se -2
		-4 -4 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
	Ž 0 2 4 6 8 10 -1	10
	-2 Cost per kg of Carbon Product	-12 Time (Years)

From the lab data analyzed, gallium has proven to be capable of reducing CO_2 at low costs and high efficiency. Further research is needed to determine the process's viability at large scales.

- The current reaction rates is promising, but little is known about how it will scale with increased volume or changes in operating conditions
- Investigating the structure and value of the graphene oxide product remains a crucial aspect in determining the economics of the process.
- Increases in the number of processing units or reactor throughput will greatly improve the process capabilities.

