Efficient Design for Utilities in a GMP Facility

Water for Injection

Water is sanitized in a

high pressure and

temperature process. WFI

is the mechanism for drug

delivery in patients.

1. Background & Motivation

Pretreatment

Filters impurities out of incoming city water before entering WFI section of process.

Used to sterilize equipment in plant. This steam is WFI quality to ensure proper sanitation.

2. Project Goals

- 1. Model an Efficient Clean Utilities System
- 2. Conduct Safety & Environmental Analysis
- 3. Develop an Overall Material and Energy Balance
- 4. Perform a Financial Analysis to Ensure Feasibility

	- 3. Eq	3. Equipment Selection				
	Method	Advantages	Disadvantages			
reatment	Stick Built	 No limitations on purified water generation More customization for the system 	 Higher capital cost Longer implementation time with building and CQV 			
Water for Injection Preti	Skid Built	 Lower capital cost Quicker implementation time 	- Limitations on purified water generation			
	Membrane Distillation	 More sustainable and cost effective Lower utility and energy costs 	- Highest risk to WFI purity; operation at ambient temperatures			
	Vapor Compression Distillation	 Good for medium to large processes Low risk to WFI purity Lower maintenance 	 Difficult to scale Higher upfront costs Produces WFI at ambient temperatures 			
	Multiple Effect Distillation	 Easy to scale Operates at high temperatures 	- Higher utilities necessary			
Steam	Electric Heating	 Good for small processes High temperatures for vaporization 	 High energy use Too small for this process 			
Clear	Steam Heating	 Reduced energy consumption Larger scale capacities 	- Higher utility requirement			

- First stage of treating city wa
- Minimize risk of fouling dur
- Facilitates removal of organ matter, microorganisms, endotoxins, inorganic ions (heavy metals and salts), and particulate matter

5. Water for Injection & Clean **Steam Design**

- Saturation point at at 7.908 bar and 170°C
- Vapor fraction of 0.4 through the use of high pressure steam
- Latent heat of pure steam
- vaporizes water
- Pressure drop of 30 psig per stage to achieve transfer of heat

Stages 2 & 3

- for storage and distribution

Stage 1

-> = Vapor → = V/ -> = Liquid E-107 ► V-102 /-104 E-105 E-104 E-106 E-103 E-101 Clean Steam Product P-101 Clean Steam - Distributed at 3 bar E-110 E-111 - 100 lbs/hr recycled - Blowdown used to pre-heat stream

Pre-Treated Water WFI 16,000 gallons/day 4,000 gallons/day

NC STATE UNIVERSITY

College of Engineering

Regan Cella, Emma Lasarsky, Saurav Jain, Stephanie Falcone, Payton Smith

6. Cost Analysis

vater	Cost Type	Value
ring	Capital Cost	\$615,701
nic	Cost of Operating Labor	\$1,996,012 / yea
d	Cost of Utilities	\$240,229 / year
	Cost of Raw Materials	\$21,450 / year
	COM = 0.180FCI + 2.73	C + 1.23(C + C)

 $COM_d = 0.180FCI + 2./3C_{OL} + 1.23(C_{UT} + C_{RM}) =$ \$5,881,804

7. Material and Energy Balance

	In	Out]
Material	2902.54 kg/hr	2901.39 kg/hr	(
Energy	-193149.35 kW	-193143.4171 kW	(

8. Recommendation

- The most important consideration when designing a clean utilities process for pharmaceutical manufacturing is that of the health and safety of the patients affected.
- The most efficient design for utilities production, minimizing risk of contaminants, includes water pretreatment, a multiple effect distillation system, and a clean steam generator. - Next steps include creation of a PFD that combines each stage of WFI production into one distillation still, for further analysis of system cost and efficiency.

9. Acknowledgements

We would like to extend a huge thank you to the Merck mentor team for partnering with us this year, and for their guidance on this project. We also would like to thank Dr. Lisa Bullard and Aaron Frye for their continued support throughout the year!

