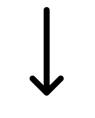


Removal of Salt from Wastewater Streams

Caitlin Beckett, Lance Clark, Braxton Coggins, Jordyn Derbes, Mark South Mentor: Dr. Philip McCarter


1 Motivation and Goals

Currently: Nation Ford Chemical processes a wastewater stream with 3,300 mg/L of TDS

Future: Implement process that will produce additional stream with 23,083.3 mg/L of TDS

New Regulation POTW has proposed a new TDS limit of 1,500 mg/L

Goals

 Lower TDS of combined process stream below 1500 mg/L using reverse osmosis

Create an economical separation process

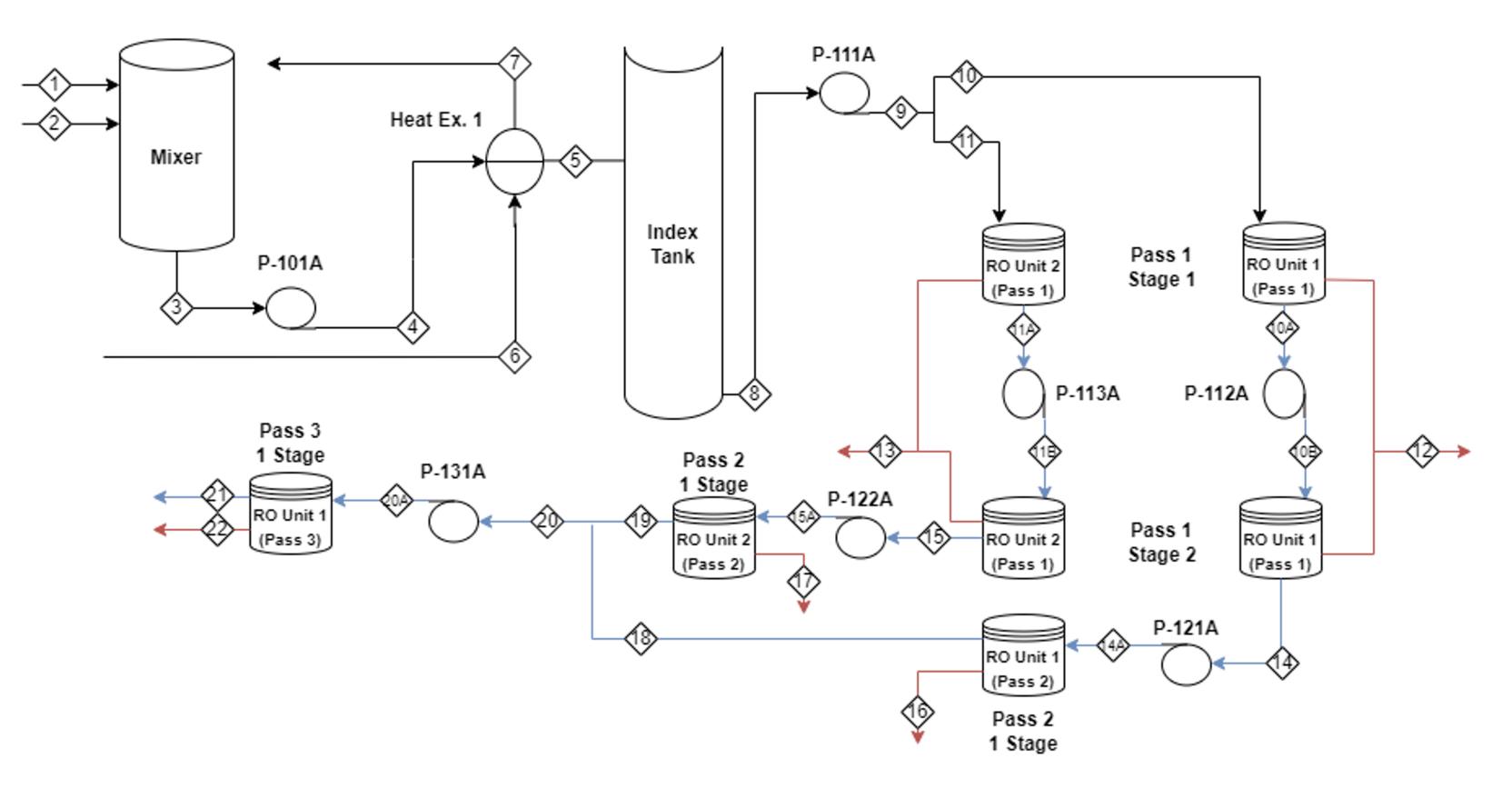
 Minimize safety hazards by implementing control and safety equipment

2 Technical Background

Reverse Osmosis: pressurized feed ran across membrane configuration.

- Permeate has low concentration of contaminants
- Concentrate has high concentration of contaminants
- Operable range of pressures to satisfy design needs
- Range and bounds found through sensitivity analysis

Reverse Osmosis


Reverse Osmosis Diagram

Reverse Osmosis, https://www.sciencefacts.net/reverse-osmosis.html

Design

3

Process Flow Diagram

Equipment Selection

Equipment Name	Type	MOC			
Mixer	Mixing Tank (built in agitator)	SS 316			
Pumps	Centrifugal	SS 316			
Heat Exchanger	Shell and Tube	Shell: CS // Tube: SS 316			
Valves	Pressure Relief // Globe	SS 316			
Index Tank	Welded Equalization Tank	SS 316			
RO System	FilmTec™ Eco Pro-400 Element	Membrane: Polymer // Housing: SS 316			
Piping	Stainless Steel	SS 316			

Stream Table

Otro and Niversia an	40	400	400	4.4.0	40	004	04
Stream Number	10	10A	10B	14A	18	20A	21
Temperature (°C)	21.11	21.11	21.11	21.11	21.11	21.11	21.11
Pressure (psi)	295.00	287.50	295.00	165.00	19.00	19.00	14.70
Flow Rate (gal/min)	8.63	2.07	8.63	6.93	3.31	6.62	0.33
Component Flow Rate (kmol/h)							
Salt 1	0.19	0.04	0.18	0.17	0.01	0.03	0.0008
Salt 2	0.21	0.07	0.31	0.29	0.02	0.05	0.0013
Water	53.78	25.80	107.57	86.22	41.63	83.26	4.15
TDS Mole Percentage	0.73%	0.45%	0.45%	0.21%	0.09%	0.09%	0.05%

Economic Analysis Capital Cost \$800,000.00 \$755,991.19 \$600,000.00 \$400,000.00 \$200,000.00 SS 316 Small PVC Pipe Material of Construction Final Capital Cost: ~\$756,000 **Operating Cost** Utilities Labor Off-site 72% Maintenance Total Operating Cost: ~\$2,850,000 **Return on Investment** 1st Year ROI: ~ -26.3% 3-Year ROI: ~ -32.5%

5 Hazards and Operability

HAZOP Guidewords- *More, Less, No*HAZOP Recommendations

- Use a composition analyzer to determine the effectiveness of the RO separation
- Apply secondary containment such as a dike in the event of loss of containment from an overflow in the index or mixing tanks
- Have regular functionality checks of process equipment
- Add insulation to process piping

Conclusions

The Process is Not Suited for Commercialization

- From a technology standpoint, the project is feasible. RO is widely used in industry.
- To produce half of the volumetric input, there would need to be 27 passes
- The maintenance and energy consumption of so many passes is so expensive that the final ROI will -26.35% after 1 year of operation

Acknowledgments and References

We would like to thank our mentor, Dr. Phillip McCarter, for his time and guidance throughout this project, as well as Dr. Bullard and Dr. Cooper for their teaching expertise.

