NC STATE UNIVERSITY

Department of Chemical & **Biomolecular Engineering**

Project Goals

- Identifying **decarbonization** opportunities through the evaluation of green energy sources
- Evaluation of **efficiency opportunities** to reduce the carbon generation per pound of product applicable to the existing technology

Background

- 38% Scope 1 & 2 emissions reduction by 2030
- Good Growth Plan
 - Strive for carbon-neutral agriculture
 - Invest **\$2B** in sustainable agriculture breakthroughs **by 2025** and deliver two sustainable technology breakthroughs each year

Current Process

- Spray dryer is located in **St. Gabriel, LA** • Product: powdered **Atrazine**
 - Spray dryer operation: ~8K MT CO₂/annual footprint
- Currently operates by **burning natural gas** a fuel source

Optimizing Spray Dryer Operations: Enhancing Efficiency and Sustainability for Reduced Carbon Footprint

Team 17: Ava Bowen, James Do, Sam Everhart, Kendall Putnam, Azin Saberi Bosari Mentors: Pierce Blazina, Nick Burrows, Ana Davis, Alan McMurry, Lindsey Norris, Emma Rodriguez, Laramie Scanlon

Biofuels

- **Current:** Combusted Natural Gas
- Alternatives:
 - Biomass-stock (Butanol)
 - Fuel-stock (Methanol)

Criteria	Importance (Weight)	Natural Gas (Current)	Biobutanol	Biomethanol	
Ease of Implementation	Case of 1 mplementation		-1	1	
Resource Availability	3	0	1	2	
Safety Rating	5	0	-2	-1	
Emissions Reduction	5	0	1	2	
Energy Density	5	0	3	-1	
Initial Cost	2	0	-1	-1	
Operation Cost (\$/MMBTU)	4	0	0 -2		
Implementation Time	3	0	-2	-1	
	Totals:	0	-1	3	

• Economic Analysis

- Current Price: \$4.00 /MMBTU
- Methanex Pricing: $1.83 / gal \rightarrow 28-32 / MMBTU$

Need 73 mil BTU/hr: 8,809 MT CO₂ per year

Process Improvement

• **ASPEN** was used to model the addition of heat exchangers to the spray drying system

• Types of **preheaters** evaluated: • Electric heater using renewable energy • Air-to-air heat exchanger using excess heat

	Natura	al Gas Required		Efficiency	
Ambient Air		Only Atrazine	Atrazine and Air	Efficiency gain from Atrazine	gain from both
Conditions	No HeatXer	preneater	preneaters	preheater	preheaters
5C, 20%	580	535	485	7.76%	16.38%
10C, 30%	570	525	480	7.89%	15.79%
20C, 50%	558	511	470	8.42%	15.77%
30C, 80%	558	502	467	10.04%	16.31%
35C, 100%	565	502	470	11.15%	16.81%

Criteria	Importance Weighting	Current (LNG)	Preheat Atrazine Before Spray Dryer	Preheat Air Before Fired Heater
Initial Cost	2	0	-1	-3
Operating Cost (\$/mt)	4	0	1	1
Time to Implement	3	0	-1	-2
Emissions Reduction	5	0	1	1
Ease of Implementing	1	0	-1	-1
Safety	3	0	-0.5	-0.5
	Totals:	0	1.5	-5.5

• Sizing:

- Atrazine Preheater: Modeled as double pipe carbon steel heat exchanger with an area of 105 sq ft
- Air Preheaters: Series of 25 plate heat exchangers with an area of 3,000 sq ft each

	Cost of equipment		MMBTU of CO2	Annual operational		Years to
Equipment	and	installation	reduced annually	cos	t reduction	pay off
Atrazine Preheater	\$	16,700.00	27979	\$	111,914.49	0.1492
Air-Air Preheaters	\$	14,200,000.00	50165	\$	200,659.19	70.7668

Conclusion

- **Biofuels:** 8,809 > 8,000 MT CO₂/year at cost increase of \$24-28/MMBTU
 - Only feasible if combined with process changes (improve efficiency)
- Atrazine preheater: Annual savings of \$112,000 with an equipment cost of \$16,700

Recommended solution to implement into process

- Air preheater: Annual savings of \$88,000 with an equipment cost of \$14,200,000
 - Only viable if cost of fuel increases significantly

Acknowledgement

Alan McMurry, Ben Spry, Dr. Lisa Bullard, Dr. Matthew Cooper, Aaron Frye, NCSU Chemical Engineering Department, Syngenta

