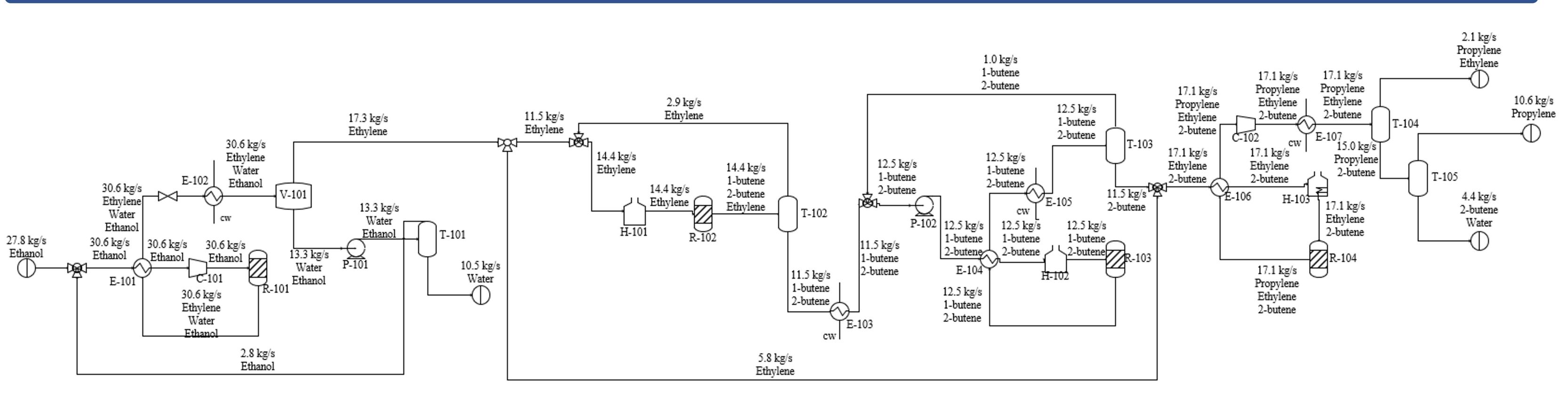
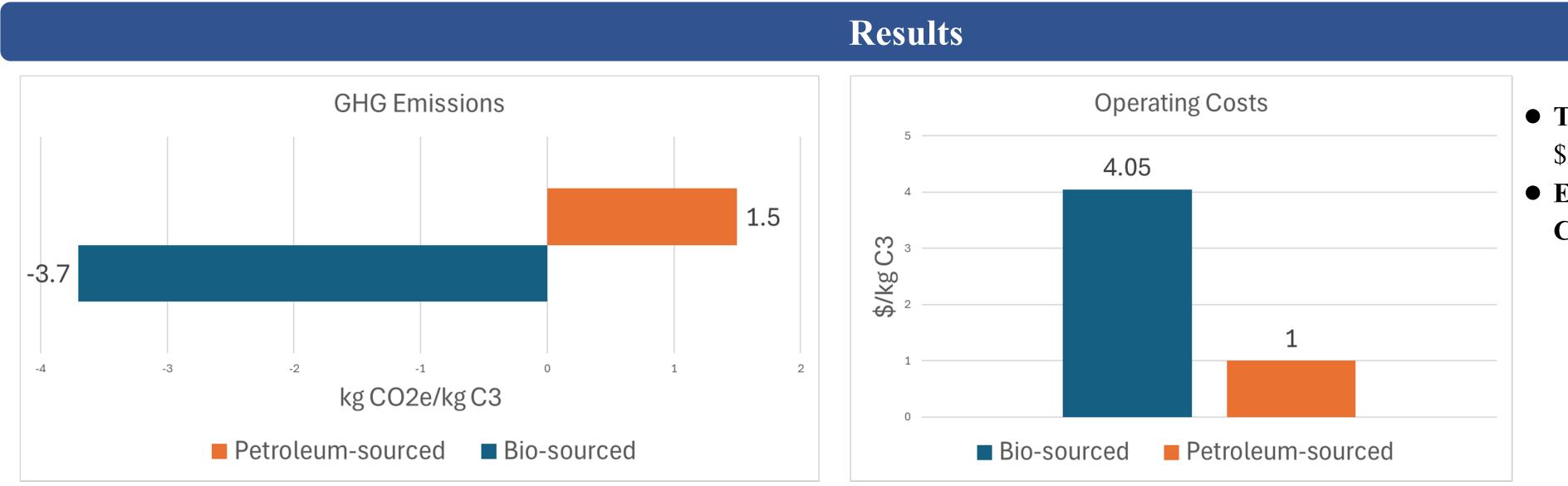
NC STATE UNIVERSITY

Goals & Motivation

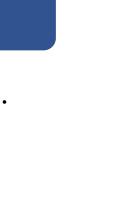

- P&G has a net zero greenhouse gas (GHG) emissions target to reach by 2040.
 - Relevance: Primary consumer of propylene-derivatives (high GHG emissions) to package their products.
- Project Goal: To assess production emissions and costs from biosourced propylene instead of petroleum-sourced.
- Examples of products that P&G develop:



1. Quantify the GHG emissions of propylene produced from ethanol.

Scope

- 2. Quantify the total production cost (TPC) of propylene produced from ethanol.
- 3. Compare the GHG emissions and TPC of bio-sourced and petroleum-sourced propylene.



Propylene Production from Bio-Ethanol

P&G Group 2: Davis Brandberg, Aidan Maune, Samantha Walker, Paig April 22, 2024

Mass and Energy Balances Mass Balances: • In = Out• Reaction conversions from industry sources • Basis of 1,000 tons of propylene produced per day (~10.5 kg/s) • Assumed perfect separations **Energy Balances:** • Reactor and separator conditions from industry sources • Reactors $\Delta H_{rxn} = \Sigma (m\Delta H_f)_{out} - \Sigma (m\Delta H_f)_{in}$ • Separators $\Delta S_{mix} = -nR\Sigma y_i ln y_i$ $\Delta G = T \Delta S_{mix}$

Baseline Ethanol Feed Requirement	17.6 kg/s	Model Ethanol Feed Requirement	27.8 kg/s
Baseline Energy Requirement	632 kJ/kg C3	Model Energy Requirement	18,238 kJ/kg C3

Process Flow Diagram

- Total Module Cost: \$20.9 million
- Equipment Purchase **Cost**: \$7 million

ige	Wheeler	
5		

Process Reactions				
Order	Chemical Formula	Description		
1	$C_2H_5OH \rightarrow C_2H_4 + H_2O$	Dehydration of ethanol to ethylene and water.		
2	$2C_2H_4 \rightarrow C_4H_8$	Dimerization of ethylene to 1-butene.		
3	$\swarrow C_4 H_8 \rightarrow C_4 H_8 / \square \setminus$	Isomerization of 1-butene to 2-butene.		
4	$C_4H_8 + C_2H_4 \rightarrow 2C_3H_6$	Metathesis of 2-butene and ethylene to propylene.		

Process Model

- Modeled in Aspen Plus software
 - Used heaters, heat exchangers, and compressors to achieve ideal conditions
 - Used reactors to achieve new chemical species
 - Used distillation columns and flash tanks to achieve separations
- Model provided mass flows and heat and electricity requirements

Conclusion

- Make the transition from petroleum to bio-sourced propylene
- Higher cost is necessary to meet net zero GHG emissions target
- Opportunity to lower total module cost through process optimization in the future

Citations

Scan QR code for a complete list of references.

