NC STATE UNIVERSITY

Department of Chemical and Biomolecular Engineering

Project Overview

- Municipal wastewater treatment plants produce sludge and biosolids which have been historically land applied or landfilled.
- Current methods of sludge management do not effectively address urbanization trends and concerns over emerging contaminants (VOCs, PFAS, and microplastics).
- Costs for beneficial use and disposal are increasing.

Objective: This project involves comparing two sludge processing technologies, drying/gasification and supercritical water oxidation (SWCO), at a processing capacity of 25 dry tons per day.

Drying/Gasification

	Gasification	SWCO
Fixed Capital Cost of Equipment	\$52,079,610.00	\$45,800,000
Cost of Operations Labor	\$2,939,608.00	\$779,896.00

Image References: Milojevic, N., & Cydzik-Kwiatkowska, A. (2021). Agricultural use of sewage sludge as a threat of microplastic (MP) spread in the environment and the role of governance. Energies, 14, 6293. https://doi.org/10.3390/en14196293, Dembek, M., & Bocian, S. (2019). Pure water as a mobile phase in liquid chromatography techniques. TrAC Trends in Analytical Chemistry, 123, 115793. https://doi.org/10.1016/j.trac.2019.115793

Analysis of Emerging Wastewater Management Systems

Team Members: Jacob Bell, Ben Jakes, Gina Mollica, Dylan Pham, Brendan Yoo Mentor: Terry Goss, P.E.

Technical Background

- **Gasification** is a thermal decomposition process that produces synthesis gas (syngas) and biochar
 - Operates at temperatures between 1,100 1,800 °F
 - Involves incomplete oxidation
- Supercritical Water Oxidation (SCWO) induces a polarity shift of water which dissolves organic waste
 - \circ Operates above supercritical point of water: 1202 °F and 3350.6 psia
 - Involves deposition of solids

to 20 wt% solids

Acknowledgements: We would like to thank the Chemical Engineering Department for their continued support. Special thanks to Terry Goss for being our mentor and giving us this tremendous opportunity!

- Feed Mixture: 40:60 primary to secondary sludge ratio, and dewaterd

Supercritical Water Oxidation

rCritical /ater	
itical oint	
\rightarrow	

To ATM
12 To ATM
Clean Water
n water/year /year ar ectricity/year
to its shorter on a pertaining
r of