Skip to main content

Gregory Parsons

Celanese Acetate Professor

Engineering Building I (EB1) 2032


Over the past several years, the field of electronic materials has expanded to include electronically active molecules, polymers, nanowires, nanotubes, and biological structures. Also, new fabrication techniques require control of chemical processes that occur at the atomic scale, especially at exposed surfaces or critical interfaces between materials.   These new materials and  processes are creating a wide range of new device options with applications in areas including energy conversion, biological sensors, light generation, and environmental and health monitoring.

Our research focuses on fundamental aspects of fabrication and function of advanced electronically active materials.  Particular areas of interest include:

  • Atomic Layer Deposition, for highly confromal fabrication of inorganic insulators and metals with atomic-scale control of growth and interface formation
  • Molecular Electronics, to better understand charge motion and electrical contacts to molecular ensembles and single molecules
  • Nanotube Structures, including synthesis, assembly, electrical characterization, and reactions involving carbon nanotubes
  • Low Temperature Processing, including supercritical-solvent and plasma processes to enable novel electronic devices on plastic substrates
  • Bio-Mimetic Molecular Photovoltaics, using porphyrin materials to help enable low cost high performance energy generation

Video not working? Use this link: Watch Video